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Abstract

We show a method for parallelizing the Trust Region Policy Optimization algorithm, using
multiple actors with their own environments to simultaneously collect experience. We trained
the model on a variety of continuous control tasks and consistently demonstrate a speedup
when compared to the benchmark of a single-threaded implementation. We also find that a
majority of time spent in a TRPO iteration is in collecting experience, rather than computing
gradients to the policy, so additional cores are best suited to parallelize the actors rather than
the learners.
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1 Introduction

In recent years, a variety of reinforcement learning algorithms have been detailed that may take
different approaches to finding an optimal policy. Trust Region Policy Optimization [1] is one
such method that consistently performs well on a variety of continuous control tasks. However,
it uses a Monte-Carlo estimation that is reliant on collecting a large amount of data after
every policy update. Compared to methods such as Q-learning [6] that update the policy after
every timestep, TRPO may experience a few thousand timesteps before updating the policy.
A major amount of the time spent in every iteration is simply collecting experience, rather
than computing gradients for the policy. Therefore, there is less of a reliance on hardware such
as a GPU which can quickly compute gradients, and more on the efficiency of a CPU which
can run many episodes of an environment quickly. In an effort to improve the practicality of
TRPO, we present a method that uses multiple actors to significantly reduce the time needed
for each policy iteration. This takes advantage of the multiple cores present in most modern
computers, to train faster on a variety of tasks.

2 Related Work

Gorila [3], short for General Reinforcement Learning Architecture, introduced a setup utilizing
separate actor processes and separate learner processes. Each actor contains a copy of a Q-
network, which periodically updates from a master parameter server. These actors continuously
run simulations and collect transition data, which is stored in a distributed replay memory.
Learner processes then sample from this replay memory and send gradients to the parameter
server, which updates the policy accordingly. Gorila was shown to make big improvements in
terms of wall-time on Atari games using the DQN structure.

Minh et al [2] introduced asynchronous versions of four common reinforcement learning
algorithms: one-step Sarsa, one-step Q learning, n-step Q learning, and actor-critic. The setup
is able to reduce training time in a near linear correlation to the number of threads used.
Furthermore, using multiple actors eliminates the need for an experience replay, since the data
is decorrelated due to actors observing different parts of the environment.

3 Background

3.1 Reinforcement Learning

A standard reinforcement learning setup consists of an environment in which an agent can ob-
serve a set of observations known as a state. The agent can then interact with the environment
by taking a set of actions, either discrete or continuous. An agents policy π(a|s) represents
a probability distribution over all possible actions, given an observation. For every timestep,
the agent receives an observation from the environment, and takes an action according to its
policy. In addition, the agent receives a scalar reward. This continues until the environment
reaches a terminal state. A return is the total sum of all future rewards, which may discount re-
wards in later timesteps. Typical ways of representing returns are a state-value function V (s),
which keeps track of expected return from any state s, or an action-value function Q(s, a),
which contains the expected return when taking action a from state s. In practice, these value
functions are usually represented using function approximators such as neural networks, as it
is impractical to use a naive table lookup when an environments state space is huge or even
infinite. An agents objective is to find a policy that will result in the greatest possible return
from all of the possible starting states of the environment. The policy may be a neural network

2



of its own, mapping from states to actions, or it may simply be to act greedily towards the
action-value function Q(s, :).

3.2 Trust Region Policy Optimizion

A recent algorithm, Trust Region Policy Optimization (TRPO), tries to solve the classic rein-
forcement learning problem of maximizing return by iteratively optimizing a surrogate func-
tion. Similarly to policy gradient methods, TRPO uses a distinct parameterized policy π(a|s)
separate from any value function. To improve its policy, TRPO attempts to maximize the
expectation of Q-values, over the distribution of states and actions given by θnew.

max
θ

∑
s

Pθ(s)
∑
a

πθ(a|s)Qθold(s, a)

subject to D
pθold
KL (θold, θ) ≤ δ

This objective can be approximated by using an importance-sampled Monte Carlo estimate
of Q values, with a distribution of states sampled from policy θold. However, theres a constraint
to updating theta: the average KL divergence between the new policy and old policy cannot be
greater than a constant δ. This acts as a limiter on the step size we can take on each update,
and can be compared to the natural gradient [4]. The theory behind TRPO guarantees gradual
improvement over the expected return of a policy, and the practical algorithm performs well
on a wide variety of tasks.

4 Parallelization

One downside to the TRPO algorithm is its on-policy nature, requiring new Q-values after every
policy update. We cannot use methods such as experience replay which reuse past information,
so we must acquire new Monte Carlo estimates of Q for every new policy. Furthermore, Monte
Carlo estimates are known to have higher variance than methods such as one-step TD updates,
since the return is affected by independent future decisions. Bringing this variance down
requires many episodes of experience per policy update, making TRPO a data-heavy algorithm.

In practice, the biggest bottleneck by a magnitude in a TRPO update is collecting the
experience. We present a setup that parallelizes actors, collecting experience from many en-
vironments simultaneously. Although the learner could also be parallelized, we find that the
additional cores are put to better use as actors, since the learner must wait until all the data
is collected before it can operate.

By using multiple agents asynchronously, we can achieve a substantial decrease in training
time, since Monte Carlo estimation is well suited for parallelization. Although we need to
collect more data, we dont have to compute Q(si+1) for every transition as in a TD update,
which lessens the workload on our single-threaded learner. We also suffer no loss from stale
data: each agent is always on the latest version of the policy.

5 Algorithm

Presented is the general outline of a parallel version of TRPO. Each actor process contains
a copy of the policy as well as its own environment. When estimating the Q function, we
place a number of requests equal to the number of episodes we want to run into a distributed
pool. Each actor can then accept requests, and run simulations in their own environments
simultaneously. At the cost of some memory, we keep a separate copy of the same up-to-date
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Algorithm 1 Parallel Trust Region Policy Optimization

1: initialize π0
2: for i = 0,1,2,... until convergence do
3: Send actor requests to distributed pool
4: Wait for all threads to finish, and collect transition experience
5: Estimate Q(s,a) using Monte Carlo
6: Find policy update direction to maximize

∑
s Pθ(s)

∑
a πθ(a|s)Qθold(s, a)

while D
pθold
KL (θold, θ) ≤ δ

7: Update policy parameters and send to all actors

policy in each actors process to evaluate the policy faster. Once an actor has finished running
an episode, it returns the transition experience, containing an observation, the action taken,
and a reward for each timestep. The actor can then accept another request, and continue until
all requests are completed. In the original TRPO algorithm, episodes are run until a certain
amount of timesteps have been recorded. However, the asynchronous nature of our method
requires us to determine how many episodes to run before collecting any data. We can estimate
this number by dividing a desired number of timesteps by the average episode length using the
previous policy.

6 Experiments

To verify our claims, we provide a simple experiment to compare TRPO with varying degrees
of parallelization. We tested the model on a variety of continuous control tasks in the Mujoco
physics simulator [5], using a setup from OpenAI gym. These tasks range from carefully
maneuvering the tip of a two-jointed arm to a desired point, to controlling the joints of a
figure and make it walk. The environment follows the classic reinforcement learning scheme:
every timestep, the agent receives a vector of real-numbered observations, and takes an action
according to its policy. The environment is updated accordingly and returns a scalar reward.
In all the experiments, the action space is a continuous vector, not a discrete action. To
account for this, we use a parameterized policy mapping an observation vector to the mean
and standard deviation of a gaussian distribution. We then sample from this distribution to
take the action.
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Figure 1: Learning curves of various continuous control environments from OpenAI gym, run using
a single threaded implementation and a parallel implementation of TRPO.

The results support our theory. The model with multiple actors is consistently able to out-
perform the single-threaded model, over a variety of environments. When comparing average
return to the iteration count, both models perform evenly with each other, showing the under-
lying methods are still the same. However, by reducing the wall-clock time required to compute
each iteration, the parallel implementation of TRPO is able to learn much faster without any
loss in accuracy.

Figure 2: The left graph shows the relationship between number of threads used and the time it
took to collect data for 20,000 timesteps on Reacher. A 5 core CPU was used. The right graph
shows the learning curve on Reacher when using varying numbers of threads.

To get a sense of how adding more threads affects the time it takes to collect experience, we
perform multiple trials on Reacher, one of the environments with a constantly stable learning
time. Parallelization always decreases the time it takes to train an iteration, albeit with dimin-
ishing returns. These diminishing returns most likely stem from hardware limitations rather
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than an inefficiency in the implementation. Although the number of threads was increased, the
same 5 core CPU was used in all trials. Using a CPU with more cores or multiple computers
would likely provide more detailed results on how much speedup can be attained.

7 Conclusion

We introduced a method of parallelizing the Trust Region Policy Optimization algorithm to
achieve a significant decrease in training time. We identified the bottleneck of the single-
threaded implementation of TRPO to be collecting experience data. We then used multiple
parallel actors, each with their own copy of the policy and their own environment, to quickly
simulate many episodes of experience simultaneously. The parallel implementation of TRPO
displayed decreasing training time when adding threads. We predict that the number of cores
used in a computer will substantially affect how much of a speedup the algorithm will gain
from adding more threads. Especially when dealing with reinforcement learning algorithms that
require big amounts of experience to train, parallelization is an important step to implementing
methods in practice. Most modern computers come with multiple cores, and it taking advantage
of them can lead to a significant speedup in wall-clock training time.
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